Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nat Commun ; 15(1): 2161, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461302

RESUMO

Human and animal tuberculosis is caused by the Mycobacterium tuberculosis Complex (MTBC), which has evolved a genomic decay of cobalamin (vitamin B12) biosynthetic genes. Accordingly, and in sharp contrast to environmental, opportunistic and ancestor mycobacteria; we demonstrate that M. tuberculosis (Mtb), M. africanum, and animal-adapted lineages, lack endogenous production of cobalamin, yet they retain the capacity for exogenous uptake. A B12 anemic model in immunocompromised and immunocompetent mice, demonstrates improved survival, and lower bacteria in organs, in B12 anemic animals infected with Mtb relative to non-anemic controls. Conversely, no differences were observed between mice groups infected with M. canettii, an ancestor mycobacterium which retains cobalamin biosynthesis. Interrogation of the B12 transcriptome in three MTBC strains defined L-methionine synthesis by metE and metH genes as a key phenotype. Expression of metE is repressed by a cobalamin riboswitch, while MetH requires the cobalamin cofactor. Thus, deletion of metE predominantly attenuates Mtb in anemic mice; although inactivation of metH exclusively causes attenuation in non-anemic controls. Here, we show how sub-physiological levels of B12 in the host antagonizes Mtb virulence, and describe a yet unknown mechanism of host-pathogen cross-talk with implications for B12 anemic populations.


Assuntos
Mycobacterium tuberculosis , Riboswitch , Tuberculose , Animais , Humanos , Camundongos , Vitamina B 12/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Virulência/genética
2.
Microbiol Spectr ; 11(6): e0468522, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37882511

RESUMO

IMPORTANCE: Aragon Community suffered, during the first years of the beginning of this century, a large outbreak caused by the MtZ strain, producing more than 240 cases to date. MtZ strain and the outbreak have been previously studied from an epidemiological and molecular point of view. In this work, we analyzed the transcriptomic profile of the strain for better understanding of its success among our population. We have discovered that MtZ has some upregulated virulence pathways, such as the ESX-1 system, the cholesterol degradation pathway or the peptidoglycan biosynthesis. Interestingly, MtZ has downregulated the uptake of iron. Another special feature of MtZ strain is the interruption of desA3 gene, essential for producing oleic acid. Although the strain takes a long time to grow in the initial culture media, eventually it is able to reach normal optical densities, suggestive of the presence of another route for obtaining oleic acid in Mycobacterium tuberculosis.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ácido Oleico/metabolismo , Meios de Cultura/metabolismo , Perfilação da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
PLoS Pathog ; 19(7): e1011437, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37450466

RESUMO

The molecular factors and genetic adaptations that contributed to the emergence of Mycobacterium tuberculosis (MTB) from an environmental Mycobacterium canettii-like ancestor, remain poorly investigated. In MTB, the PhoPR two-component regulatory system controls production and secretion of proteins and lipid virulence effectors. Here, we describe that several mutations, present in phoR of M. canettii relative to MTB, impact the expression of the PhoP regulon and the pathogenicity of the strains. First, we establish a molecular model of PhoR and show that some substitutions found in PhoR of M. canettii are likely to impact the structure and activity of this protein. Second, we show that STB-K, the most attenuated available M. canettii strain, displays lower expression of PhoP-induced genes than MTB. Third, we demonstrate that genetic swapping of the phoPR allele from STB-K with the ortholog from MTB H37Rv enhances expression of PhoP-controlled functions and the capacities of the recombinant strain to colonize human macrophages, the MTB target cells, as well as to cause disease in several mouse infection models. Fourth, we extended these observations to other M. canettii strains and confirm that PhoP-controlled functions are expressed at lower levels in most M. canettii strains than in M. tuberculosis. Our findings suggest that distinct PhoR variants have been selected during the evolution of tuberculosis bacilli, contributing to higher pathogenicity and persistence of MTB in the mammalian host.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Humanos , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Tuberculose/microbiologia , Mamíferos
4.
Microbiol Spectr ; 11(3): e0534422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36988496

RESUMO

A bedaquiline-resistant Mycobacterium abscessus isolate was sequenced, and a candidate mutation in the atpE gene was identified as responsible for the antibiotic resistance phenotype. To establish a direct genotype-phenotype relationship of this mutation which results in a Asp-to-Ala change at position 29 (D29A), we developed a recombineering-based method consisting of the specific replacement of the desired mutation in the bacterial chromosome. As surrogate bacteria, we used two M. abscessus bedaquiline-susceptible strains: ATCC 19977 and the SL541 clinical isolate. The allelic exchange substrates used in recombineering carried either the sole D29A mutation or a genetic barcode of silent mutations in codons flanking the D29A mutation. After selection of bedaquiline-resistant M. abscessus colonies transformed with both substrates, we obtained equivalent numbers of recombinants. These resistant colonies were analyzed by allele-specific PCR and Sanger sequencing, and we demonstrated that the presence of the genetic barcode was linked to the targeted incorporation of the desired mutation in its chromosomal location. All recombinants displayed the same MIC to bedaquiline as the original isolate, from which the D29A mutation was identified. Finally, to demonstrate the broad applicability of this method, we confirmed the association of bedaquiline resistance with the atpE A64P mutation in analysis performed in independent M. abscessus strains and by independent researchers. IMPORTANCE Antimicrobial resistance (AMR) threatens the effective prevention and treatment of an ever-increasing range of infections caused by microorganisms. On the other hand, infections caused by Mycobacterium abscessus affect people with chronic lung diseases, and their incidence has grown alarmingly in recent years. Further, these bacteria are known to easily develop AMR to the few therapeutic options available, making their treatment long-lasting and challenging. The recent introduction of new antibiotics against M. abscessus, such as bedaquiline, makes us anticipate a future when a plethora of antibiotic-resistant strains will be isolated and sequenced. However, in the era of whole-genome sequencing, one of the challenges is to unequivocally assign a biological function to each identified polymorphism. Thus, in this study, we developed a fast, robust, and reliable method to assign genotype-phenotype associations for putative antibiotic-resistant polymorphisms in M. abscessus.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Estudos de Associação Genética , Testes de Sensibilidade Microbiana
5.
BMC Microbiol ; 22(1): 211, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045335

RESUMO

Macrophages play an essential role in the process of recognition and containment of microbial infections. These immune cells are recruited to infectious sites to reach and phagocytose pathogens. Specifically, in this article, bacteria from the genus Mycobacterium, Salmonella and Escherichia, were selected to study the directional macrophage movement towards different bacterial fractions. We recreated a three-dimensional environment in a microfluidic device, using a collagen-based hydrogel that simulates the mechanical microarchitecture associated to the Extra Cellular Matrix (ECM). First, we showed that macrophage migration is affected by the collagen concentration of their environment, migrating greater distances at higher velocities with decreasing collagen concentrations. To recreate the infectious microenvironment, macrophages were exposed to lateral gradients of bacterial fractions obtained from the intracellular pathogens M. tuberculosis and S. typhimurium. Our results showed that macrophages migrated directionally, and in a concentration-dependent manner, towards the sites where bacterial fractions are located, suggesting the presence of attractants molecules in all the samples. We confirmed that purified M. tuberculosis antigens, as ESAT-6 and CFP-10, stimulated macrophage recruitment in our device. Finally, we also observed that macrophages migrate towards fractions from non-pathogenic bacteria, such as M. smegmatis and Escherichia coli. In conclusion, our microfluidic device is a useful tool which opens new perspectives to study the recognition of specific antigens by innate immune cells.


Assuntos
Escherichia coli , Macrófagos , Mycobacterium tuberculosis , Tuberculose , Técnicas de Cultura de Células em Três Dimensões , Colágeno , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Microfluídica/métodos , Salmonella
6.
Front Cell Infect Microbiol ; 12: 887134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685752

RESUMO

Since 2004, a tuberculosis surveillance protocol has been carried out in Aragon, thereby managing to detect all tuberculosis outbreaks that take place in the community. The largest outbreak was caused by a strain named Mycobacterium tuberculosis Zaragoza (MtZ), causing 242 cases as of 2020. The main objective of this work was to analyze this outbreak and the molecular characteristics of this successful strain that could be related to its greater transmission. To do this, we first applied whole-genome sequencing to 57 of the isolates. This revealed two principal transmission clusters and six subclusters arising from them. The MtZ strain belongs to L4.8 and had eight specific single nucleotide polymorphisms (SNPs) in genes considered to be virulence factors [ptpA, mc3D, mc3F, VapB41, pks15 (two SNPs), virS, and VapC50]. Second, a transcriptomic study was carried out to better understand the multiple IS6110 copies present in its genome. This allowed us to observe three effects of IS6110: the disruption of the gene in which the IS6110 is inserted (desA3), the overexpression of a gene (ppe38), and the absence of transcription of genes (cut1:Rv1765c) due to the recombination of two IS6110 copies. Finally, because of the disruption of ppe38 and ppe71 genes by an IS6110, a study of PE_PGRS secretion was carried out, showing that MtZ secretes these factors in higher amounts than the reference strain, thereby differing from the hypervirulent phenotype described for the Beijing strains. In conclusion, MtZ consists of several SNPs in genes related to virulence, pathogenesis, and survival, as well as other genomic polymorphisms, which may be implicated in its success among our population.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , DNA Bacteriano/genética , Surtos de Doenças , Genoma Bacteriano , Humanos , Virulência/genética
7.
Mol Ther Nucleic Acids ; 27: 1235-1248, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35282413

RESUMO

Cyclic (di)nucleotides act as universal second messengers endogenously produced by several pathogens. Specifically, the roles of c-di-AMP in Mycobacterium tuberculosis immunity and virulence have been largely explored, although its contribution to the safety and efficacy of live tuberculosis vaccines is less understood. In this study, we demonstrate that the synthesis of c-di-AMP is negatively regulated by the M. tuberculosis PhoPR virulence system. Accordingly, the live attenuated tuberculosis vaccine candidate M. tuberculosis vaccine (MTBVAC), based on double phoP and fadD26 deletions, produces more than 25- and 45-fold c-di-AMP levels relative to wild-type M. tuberculosis or the current vaccine bacille Calmette-Guérin (BCG), respectively. Secretion of this second messenger was exclusively detected in MTBVAC but not in M. tuberculosis or in BCG. We also demonstrate that c-di-AMP synthesis during in vitro cultivation of M. tuberculosis is a growth-phase- and medium-dependent phenotype. To uncover the role of this metabolite in the vaccine properties of MTBVAC, we constructed and validated knockout and overproducing/oversecreting derivatives by inactivating the disA or cnpB gene, respectively. All MTBVAC derivatives elicited superior interleukin-1ß (IL-1ß) responses compared with BCG during an in vitro infection of human macrophages. However, both vaccines failed to elicit interferon ß (IFNß) activation in this cellular model. We found that increasing c-di-AMP levels remarkably correlated with a safer profile of tuberculosis vaccines in the immunodeficient mouse model. Finally, we demonstrate that overproduction of c-di-AMP due to cnpB inactivation resulted in lower protection of MTBVAC, while the absence of c-di-AMP in the MTBVAC disA derivative maintains the protective efficacy of this vaccine in mice.

8.
Microb Biotechnol ; 15(2): 395-414, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33645897

RESUMO

Some bacteria have coevolved to establish symbiotic or pathogenic relationships with plants, animals or humans. With human association, the bacteria can cause a variety of diseases. Thus, understanding bacterial phenotypes at the single-cell level is essential to develop beneficial applications. Traditional microbiological techniques have provided great knowledge about these organisms; however, they have also shown limitations, such as difficulties in culturing some bacteria, the heterogeneity of bacterial populations or difficulties in recreating some physical or biological conditions. Microfluidics is an emerging technique that complements current biological assays. Since microfluidics works with micrometric volumes, it allows fine-tuning control of the test conditions. Moreover, it allows the recruitment of three-dimensional (3D) conditions, in which several processes can be integrated and gradients can be generated, thus imitating physiological 3D environments. Here, we review some key microfluidic-based studies describing the effects of different microenvironmental conditions on bacterial response, biofilm formation and antimicrobial resistance. For this aim, we present different studies classified into six groups according to the design of the microfluidic device: (i) linear channels, (ii) mixing channels, (iii) multiple floors, (iv) porous devices, (v) topographic devices and (vi) droplet microfluidics. Hence, we highlight the potential and possibilities of using microfluidic-based technology to study bacterial phenotypes in comparison with traditional methodologies.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Bactérias , Biofilmes , Microfluídica/métodos
9.
Comput Struct Biotechnol J ; 19: 4273-4283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34429847

RESUMO

Live vaccines are attractive vehicles for antigen delivery as a strategy to immunize against heterologous pathogens. The live vaccine MTBVAC is based on rational attenuation of Mycobacterium tuberculosis with the objective of improving BCG protection against pulmonary tuberculosis. However, the development of recombinant mycobacteria as antigen-presenting microorganisms has been hindered due to their fastidious genetic manipulation. In this study, we used MTBVAC as a genetic platform to deliver diphtheria, tetanus, or pertussis toxoids, which are the immunogenic constituents of the DTP vaccine. When using nonoptimal genetic conditions, the expression of these immunogens was barely detectable. Accordingly, we pursued a rational, step-by-step optimization of the genetic components to achieve the expression and secretion of these toxoids. We explored variants of the L5 mycobacteriophage promoter to ensure balanced antigen expression and plasmid stability. Optimal signal sequences were identified by comparative proteomics of MTBVAC and its parental strain. It was determined that proteins secreted by the Twin Arginine Translocation pathway displayed higher secretion in MTBVAC, and the Ag85A secretion sequence was selected as the best candidate. Because the coding regions of diphtheria, tetanus, and pertussis toxoids significantly differ in G + C content relative to mycobacterial genes, their codon usage was optimized. We also placed a 3xFLAG epitope in frame with the C-terminus of these toxoids to facilitate protein detection. Altogether, these optimizations resulted in the secretion of DTP antigens by MTBVAC, as demonstrated by western blot and MRM-MS. Finally, we examined specific antibody responses in mice vaccinated with recombinant MTBVAC expressing DTP antigens.

10.
Vaccine ; 39(50): 7277-7285, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238608

RESUMO

At its 100th birthday of its first administration to a newborn, BCG has been (and continues being) an inspiration for the construction and development of hundreds of new TB vaccine candidates in the last two and a half decades. Today, 14 candidates are in clinical development inside the global TB vaccine pipeline. MTBVAC is one of these candidates. Based on a live-attenuated Mycobacterium tuberculosis clinical isolate, MTBVAC's 25 years of vaccine discovery, construction and characterisation have followed Pasteur principles, and in the process, BCG has served as a reference gold standard for establishing the safety and protective efficacy of new TB vaccine candidates. MTBVAC, which contains the antigen repertoire of M. tuberculosis, is now poised to initiate Phase 3 efficacy trials in newborns in TB-endemic countries. BCG's efficacy extends beyond that against TB, shown to confer heterologous non-specific immunity to other diseases and reduce all-cause mortality in the first months of life. Today, WHO recognises the importance that any new TB vaccine designed for administration at birth, should show similar non-specific benefits as BCG vía mechanisms of trained immunity and/or cross-reactivity of adaptive immune responses to other pathogens. Key recent studies provide strong support for MTBVAC's ability of inducing trained immunity and conferring non-specific heterologous protection similar to BCG. Research on alternative delivery routes of MTBVAC, such as a clinically feasible aerosol route, could facilitate vaccine administration for long-term TB eradication programmes in the future.


Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Vacina BCG , Humanos , Recém-Nascido , Tuberculose/prevenção & controle , Vacinas Atenuadas
11.
EBioMedicine ; 65: 103254, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33711798

RESUMO

BACKGROUND: The Bacillus Calmette-Guérin (BCG), the only vaccine against tuberculosis (TB) currently in use, has shown beneficial effects against unrelated infections and to enhance immune responses to vaccines. However, there is little evidence regarding the influence of BCG vaccination on pertussis. METHODS: Here, we studied the ability of BCG to improve the immune responses to diphtheria, tetanus, and acellular (DTaP) or whole-cell pertussis (DTwP) vaccination in a mouse model. We included MTBVAC, an experimental live-attenuated vaccine derived from Mycobacterium tuberculosis, in our studies to explore if it presents similar heterologous immunity as BCG. Furthermore, we explored the potential effect of routine BCG vaccination on pertussis incidence worldwide. FINDINGS: We found that both BCG and MTBVAC when administered before DTaP, triggered Th1 immune responses against diphtheria, tetanus, and pertussis in mice. Immunization with DTaP alone failed to trigger a Th1 response, as measured by the production of IFN-γ. Humoral responses against DTaP antigens were also enhanced by previous immunization with BCG or MTBVAC. Furthermore, exploration of human epidemiological data showed that pertussis incidence was 10-fold lower in countries that use DTaP and BCG compared to countries that use only DTaP. INTERPRETATION: BCG vaccination may have a beneficial impact on the protection against pertussis conferred by DTaP. Further randomized controlled trials are needed to properly define the impact of BCG on pertussis incidence in a controlled setting. This could be a major finding that would support changes in immunization policies. FUNDING: This work was supported by the Ministry of "Economía y Competitividad"; European Commission H2020 program, "Gobierno de Aragón"; CIBERES; "Fundação Butantan"; Instituto de Salud Carlos III and "Fondo FEDER".


Assuntos
Vacina BCG/administração & dosagem , Vacinas contra Difteria, Tétano e Coqueluche Acelular/administração & dosagem , Imunidade Humoral , Coqueluche/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Difteria/imunologia , Difteria/prevenção & controle , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Incidência , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Tétano/imunologia , Tétano/prevenção & controle , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Vacinação , Coqueluche/epidemiologia , Coqueluche/imunologia
12.
Comput Struct Biotechnol J, v. 19, p. 4273-4283, jul. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3927

RESUMO

Live vaccines are attractive vehicles for antigen delivery as a strategy to immunize against heterologous pathogens. The live vaccine MTBVAC is based on rational attenuation of Mycobacterium tuberculosis with the objective of improving BCG protection against pulmonary tuberculosis. However, the development of recombinant mycobacteria as antigen-presenting microorganisms has been hindered due to their fastidious genetic manipulation. In this study, we used MTBVAC as a genetic platform to deliver diphtheria, tetanus, or pertussis toxoids, which are the immunogenic constituents of the DTP vaccine. When using nonoptimal genetic conditions, the expression of these immunogens was barely detectable. Accordingly, we pursued a rational, step-by-step optimization of the genetic components to achieve the expression and secretion of these toxoids. We explored variants of the L5 mycobacteriophage promoter to ensure balanced antigen expression and plasmid stability. Optimal signal sequences were identified by comparative proteomics of MTBVAC and its parental strain. It was determined that proteins secreted by the Twin Arginine Translocation pathway displayed higher secretion in MTBVAC, and the Ag85A secretion sequence was selected as the best candidate. Because the coding regions of diphtheria, tetanus, and pertussis toxoids significantly differ in G + C content relative to mycobacterial genes, their codon usage was optimized. We also placed a 3xFLAG epitope in frame with the C-terminus of these toxoids to facilitate protein detection. Altogether, these optimizations resulted in the secretion of DTP antigens by MTBVAC, as demonstrated by western blot and MRM-MS. Finally, we examined specific antibody responses in mice vaccinated with recombinant MTBVAC expressing DTP antigens.

13.
PLoS Pathog ; 16(12): e1009061, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347499

RESUMO

Species belonging to the Mycobacterium tuberculosis Complex (MTBC) show more than 99% genetic identity but exhibit distinct host preference and virulence. The molecular genetic changes that underly host specificity and infection phenotype within MTBC members have not been fully elucidated. Here, we analysed RD900 genomic region across MTBC members using whole genome sequences from 60 different MTBC strains so as to determine its role in the context of MTBC evolutionary history. The RD900 region comprises two homologous genes, pknH1 and pknH2, encoding a serine/threonine protein kinase PknH flanking the tbd2 gene. Our analysis revealed that RD900 has been independently lost in different MTBC lineages and different strains, resulting in the generation of a single pknH gene. Importantly, all the analysed M. bovis and M. caprae strains carry a conserved deletion within a proline rich-region of pknH, independent of the presence or absence of RD900. We hypothesized that deletion of pknH proline rich-region in M. bovis may affect PknH function, having a potential role in its virulence and evolutionary adaptation. To explore this hypothesis, we constructed two M. bovis 'knock-in' strains containing the M. tuberculosis pknH gene. Evaluation of their virulence phenotype in mice revealed a reduced virulence of both M. bovis knock-in strains compared to the wild type, suggesting that PknH plays an important role in the differential virulence phenotype of M. bovis vs M. tuberculosis.


Assuntos
Proteínas de Bactérias/genética , Interações entre Hospedeiro e Microrganismos/genética , Mycobacterium tuberculosis/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Proteínas de Bactérias/metabolismo , Feminino , Genômica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/patogenicidade , Polimorfismo Genético/genética , Proteínas Serina-Treonina Quinases/metabolismo , Virulência/genética
14.
EBioMedicine ; 55: 102761, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32361249

RESUMO

BACKGROUND: Human tuberculosis (TB) is caused by a plethora of Mycobacterium tuberculosis complex (MTBC) strains belonging to seven phylogenetic branches. Lineages 2, 3 and 4 are considered "modern" branches of the MTBC responsible for the majority of worldwide TB. Since the current BCG vaccine confers variable protection against pulmonary TB, new candidates are investigated. MTBVAC is the unique live attenuated vaccine based on M. tuberculosis in human clinical trials. METHODS: MTBVAC was originally constructed by unmarked phoP and fadD26 deletions in a clinical isolate belonging to L4. Here we construct new vaccines based on isogenic gene deletions in clinical isolates of the L2 and L3 modern lineages. These three vaccine candidates were characterized at molecular level and also in animal experiments of protection and safety. FINDINGS: Safety studies in immunocompromised mice showed that MTBVAC-L2 was less attenuated than BCG Pasteur, while the original MTBVAC was found even more attenuated than BCG and MTBVAC-L3 showed an intermediate phenotype. The three MTBVAC candidates showed similar or superior protection compared to BCG in immunocompetent mice vaccinated with each MTBVAC candidate and challenged with three representative strains of the modern lineages. INTERPRETATION: MTBVAC vaccines, based on double phoP and fadD26 deletions, protect against TB independently of the phylogenetic linage used as template strain for their construction. Nevertheless, lineage L4 confers the best safety profile. FUNDING: European Commission (TBVAC2020, H2020-PHC-643381), Spanish Ministry of Science (RTI2018-097625-B-I00), Instituto de Salud Carlos III (PI18/0336), Gobierno de Aragón/Fondo Social Europeo and the French National Research Council (ANR-10-LABX-62-IBEID, ANR-16-CE35-0009, ANR-16-CE15-0003).


Assuntos
Proteínas de Bactérias/imunologia , Ligases/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/prevenção & controle , Animais , Vacina BCG/administração & dosagem , Vacina BCG/biossíntese , Vacina BCG/genética , Proteínas de Bactérias/genética , Feminino , Deleção de Genes , Expressão Gênica , Patrimônio Genético , Humanos , Imunogenicidade da Vacina , Ligases/deficiência , Ligases/genética , Camundongos , Camundongos SCID , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Segurança do Paciente , Análise de Sobrevida , Vacinas contra a Tuberculose/biossíntese , Vacinas contra a Tuberculose/genética , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/mortalidade , Vacinação , Vacinas Atenuadas , População Branca
16.
Lancet Respir Med ; 7(9): 757-770, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31416768

RESUMO

BACKGROUND: Infants are a key target population for new tuberculosis vaccines. We assessed the safety and immunogenicity of the live-attenuated Mycobacterium tuberculosis vaccine candidate MTBVAC in adults and infants in a region where transmission of tuberculosis is very high. METHODS: We did a randomised, double-blind, BCG-controlled, dose-escalation trial at the South African Tuberculosis Vaccine Initiative site near Cape Town, South Africa. Healthy adult community volunteers who were aged 18-50 years, had received BCG vaccination as infants, were HIV negative, had negative interferon-γ release assay (IGRA) results, and had no personal history of tuberculosis or current household contact with someone with tuberculosis were enrolled in a safety cohort. Infants born to HIV-negative women with no personal history of tuberculosis or current household contact with a person with tuberculosis and who were 96 h old or younger, generally healthy, and had not yet received routine BCG vaccination were enrolled in a separate infant cohort. Eligible adults were randomly assigned (1:1) to receive either BCG Vaccine SSI (5 × 105 colony forming units [CFU] of Danish strain 1331 in 0·1 mL diluent) or MTBVAC (5 × 105 CFU in 0·1 mL) intradermally in the deltoid region of the arm. After favourable review of 28-day reactogenicity and safety data in the adult cohort, infants were randomly assigned (1:3) to receive either BCG Vaccine SSI (2·5 × 105 CFU in 0·05 mL diluent) or MTBVAC in three sequential cohorts of increasing MTBVAC dose (2·5 × 103 CFU, 2·5 × 104 CFU, and 2·5 × 105 CFU in 0·05 mL) intradermally in the deltoid region of the arm. QuantiFERON-TB Gold In-Tube IGRA was done on days 180 and 360. For both randomisations, a pre-prepared block randomisation schedule was used. Participants (and their parents or guardians in the case of infant participants), investigators, and other clinical and laboratory staff were masked to intervention allocation. The primary outcomes, which were all measured in the infant cohort, were solicited and unsolicited local adverse events and serious adverse events until day 360; non-serious systemic adverse events until day 28 and vaccine-specific CD4 and CD8 T-cell responses on days 7, 28, 70, 180, and 360. Secondary outcomes measured in adults were local injection-site and systemic reactions and haematology and biochemistry at study day 7 and 28. Safety analyses and immunogenicity analyses were done in all participants who received a dose of vaccine. This trial is registered with ClinicalTrials.gov, number NCT02729571. FINDINGS: Between Sept 29, 2015, and Nov 16, 2015, 62 adults were screened and 18 were enrolled and randomly assigned, nine each to the BCG and MTBVAC groups. Between Feb 12, 2016, and Sept 21, 2016, 36 infants were randomly assigned-eight to the BCG group, nine to the 2·5 × 103 CFU MTBVAC group, nine to the 2·5 × 104 CFU group, and ten to the 2·5 × 105 CFU group. Mild injection-site reactions occurred only in infants in the BCG and the 2·5 × 105 CFU MTBVAC group, with no evidence of local or regional injection-site complications. Systemic adverse events were evenly distributed across BCG and MTBVAC dose groups, and were mostly mild in severity. Eight serious adverse events were reported in seven vaccine recipients (one adult MTBVAC recipient, one infant BCG recipient, one infant in the 2·5 × 103 CFU MTBVAC group, two in the 2·5 × 104 CFU MTBVAC group, and two in the 2·5 × 105 CFU MTBVAC group), including one infant in the 2·5 × 103 CFU MTBVAC group treated for unconfirmed tuberculosis and one in the 2·5 × 105 CFU MTBVAC group treated for unlikely tuberculosis. One infant died as a result of possible viral pneumonia. Vaccination with all MTBVAC doses induced durable antigen-specific T-helper-1 cytokine-expressing CD4 cell responses in infants that peaked 70 days after vaccination and were detectable 360 days after vaccination. For the highest MTBVAC dose (ie, 2·5 × 105 CFU), these responses exceeded responses induced by an equivalent dose of the BCG vaccine up to 360 days after vaccination. Dose-related IGRA conversion was noted in three (38%) of eight infants in the 2·5 × 103 CFU MTBVAC group, six (75%) of eight in the 2·5 × 104 CFU MTBVAC group, and seven (78%) of nine in the 2·5 × 105 CFU MTBVAC group at day 180, compared with none of seven infants in the BCG group. By day 360, IGRA reversion had occurred in all three infants (100%) in the 2·5 × 103 CFU MTBVAC group, four (67%) of the six in the 2·5 × 104 CFU MTBVAC group, and three (43%) of the seven in the 2·5 × 105 CFU MTBVAC group. INTERPRETATION: MTBVAC had acceptable reactogenicity, and induced a durable CD4 cell response in infants. The evidence of immunogenicity supports progression of MTBVAC into larger safety and efficacy trials, but also confounds interpretation of tests for M tuberculosis infection, highlighting the need for stringent endpoint definition. FUNDING: Norwegian Agency for Development Cooperation, TuBerculosis Vaccine Initiative, UK Department for International Development, and Biofabri.


Assuntos
Vacina BCG/uso terapêutico , Vacinas contra a Tuberculose/uso terapêutico , Tuberculose/prevenção & controle , Adolescente , Adulto , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Relação Dose-Resposta a Droga , Método Duplo-Cego , Vias de Administração de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , África do Sul , Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Adulto Jovem
17.
ACS Infect Dis ; 5(8): 1317-1326, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31099236

RESUMO

MTBVAC is a live attenuated M. tuberculosis vaccine constructed by genetic deletions in the phoP and fadD26 virulence genes. The MTBVAC vaccine is currently in phase 2 clinical trials with newborns and adults in South Africa, one of the countries with the highest incidence. Although MTBVAC has been extensively characterized by genomics, transcriptomics, lipidomics, and proteomics, its metabolomic profile is yet unknown. Accordingly, in this study we aim to identify differential metabolites between M. tuberculosis and MTBVAC. To this end, an untargeted metabolomics approach based on liquid chromatography coupled to high-resolution mass spectrometry was implemented in order to explore the main metabolic differences between M. tuberculosis and MTBVAC. As an outcome, we identified a set of 34 metabolites involved in diverse bacterial biosynthetic pathways. A consistent increase in the phosphatidylinositol species was observed in the vaccine candidate relative to its parental strain. This phenotype resulted in an increased production of phosphatidylinositol mannosides, a novel PhoP-regulated phenotype in the most widespread lineages of M. tuberculosis. This study represents a step ahead in our understanding of the MTBVAC vaccine, and some of the differential metabolites identified in this work might be used as potential vaccination biomarkers.


Assuntos
Vias Biossintéticas , Metabolômica , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Vacinas contra a Tuberculose , Proteínas de Bactérias/genética , Cromatografia Líquida , Espectrometria de Massas , Mycobacterium tuberculosis/genética , Fosfatidilinositóis/metabolismo
18.
Mol Ther Methods Clin Dev ; 13: 253-264, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30859110

RESUMO

The tuberculosis (TB) vaccine MTBVAC is the only live-attenuated Mycobacterium tuberculosis (Mtb)-based vaccine in clinical development, and it confers superior protection in different animal models compared to the current vaccine, BCG (Mycobacterium bovis bacillus Calmette-Guérin). With the aim of using MTBVAC as a vector for a dual TB-HIV vaccine, we constructed the recombinant MTBVAC.HIVA2auxo strain. First, we generated a lysine auxotroph of MTBVAC (MTBVACΔlys) by deleting the lysA gene. Then the auxotrophic MTBVACΔlys was transformed with the E. coli-mycobacterial vector p2auxo.HIVA, harboring the lysA-complementing gene and the HIV-1 clade A immunogen HIVA. This TB-HIV vaccine conferred similar efficacy to the parental strain MTBVAC against Mtb challenge in mice. MTBVAC.HIVA2auxo was safer than BCG and MTBVAC in severe combined immunodeficiency (SCID) mice, and it was shown to be maintained up to 42 bacterial generations in vitro and up to 100 days after inoculation in vivo. The MTBVAC.HIVA2auxo vaccine, boosted with modified vaccinia virus Ankara (MVA).HIVA, induced HIV-1 and Mtb-specific interferon-γ-producing T cell responses and polyfunctional HIV-1-specific CD8+ T cells producing interferon-γ (IFN-γ), tumor necrosis factor alpha (TNF-α), and CD107a in BALB/c mice. Here we describe new tools to develop combined vaccines against TB and HIV with the potential of expansion for other infectious diseases.

19.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 36(10): 648-656, dic. 2018. tab, graf, mapas
Artigo em Espanhol | IBECS | ID: ibc-176931

RESUMO

La vacunación con BCG (bacilo Calmette-Guérin) está incluida en el calendario de inmunización al nacimiento en países con alta incidencia de tuberculosis, con una cobertura global cercana al 90%. BCG tiene casi cien años de antigüedad y está basada en una cepa atenuada de Mycobacterium bovis, proporcionando protección contra las formas diseminadas de la enfermedad pero confiriendo una protección muy limitada contra las formas pulmonares de tuberculosis, responsables de su transmisión. Diferentes vacunas profilácticas contra la tuberculosis se encuentran hoy en desarrollo clínico para reemplazar a BCG o para mejorar la protección en individuos ya vacunados con BCG. MTBVAC es la primera y única vacuna candidata basada en una cepa de Mycobacterium tuberculosis atenuada en evaluación clínica. Los planes de desarrollo clínico del MTBVAC se dirigen en primer lugar a la prevención de la tuberculosis en recién nacidos, para reemplazar a BCG, y en segundo lugar en adolescentes y adultos


BCG (Bacille Calmette-Guérin) vaccination is included in the immunization schedule for tuberculosis endemic countries with a global coverage at birth close to 90% worldwide. BCG was attenuated from Mycobacterium bovis almost a century ago, and provides a strong protection against disseminated forms of the disease, though very limited against pulmonary forms of tuberculosis, responsible for transmission. Novel prophylactic tuberculosis vaccines are in clinical development either to replace BCG or to improve its protection against respiratory forms of the disease. There are limitations understanding the immunological responses involved and the precise type of long-lived immunity that new vaccines need to induce. MTBVAC is the first and only tuberculosis vaccine candidate based on live-attenuated Mycobacterium tuberculosis in clinical evaluation. MTBVAC clinical development plans to target tuberculosis prevention in newborns, as a BCG replacement strategy, and as secondary objective to be tested in adolescents and adults previous vaccinated with BCG


Assuntos
Humanos , Recém-Nascido , Adolescente , Adulto , Tuberculose/epidemiologia , Tuberculose/prevenção & controle , Vacina BCG/administração & dosagem , Vacina BCG/história
20.
Enferm Infecc Microbiol Clin (Engl Ed) ; 36(10): 648-656, 2018 Dec.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-29627126

RESUMO

BCG (Bacille Calmette-Guérin) vaccination is included in the immunization schedule for tuberculosis endemic countries with a global coverage at birth close to 90% worldwide. BCG was attenuated from Mycobacterium bovis almost a century ago, and provides a strong protection against disseminated forms of the disease, though very limited against pulmonary forms of tuberculosis, responsible for transmission. Novel prophylactic tuberculosis vaccines are in clinical development either to replace BCG or to improve its protection against respiratory forms of the disease. There are limitations understanding the immunological responses involved and the precise type of long-lived immunity that new vaccines need to induce. MTBVAC is the first and only tuberculosis vaccine candidate based on live-attenuated Mycobacterium tuberculosis in clinical evaluation. MTBVAC clinical development plans to target tuberculosis prevention in newborns, as a BCG replacement strategy, and as secondary objective to be tested in adolescents and adults previous vaccinated with BCG.


Assuntos
Vacina BCG , Tuberculose/prevenção & controle , Vacinação , Vacina BCG/imunologia , Ensaios Clínicos como Assunto , Previsões , Humanos , Resultado do Tratamento , Vacinação/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...